Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.237
Filtrar
1.
Biol Sex Differ ; 14(1): 74, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880697

RESUMO

BACKGROUND: Monopterus albus is a hermaphroditic fish with sex reversal from ovaries to testes via the ovotestes in the process of gonadal development, but the molecular mechanism of the sex reversal was unknown. METHODS: We produced transcriptomes containing mRNAs and lncRNAs in the crucial stages of the gonad, including the ovary, ovotestis and testis. The expression of the crucial lncRNAs and their target genes was detected using qRT‒PCR and in situ hybridization. The methylation level and activity of the lncRNA promoter were analysed by applying bisulfite sequencing PCR and dual-luciferase reporter assays, respectively. RESULTS: This effort revealed that gonadal development was a dynamic expression change. Regulatory networks of lncRNAs and their target genes were constructed through integrated analysis of lncRNA and mRNA data. The expression and DNA methylation of the lncRNAs MSTRG.38036 and MSTRG.12998 and their target genes Psmß8 and Ptk2ß were detected in developing gonads and sex reversal gonads. The results showed that lncRNAs and their target genes exhibited consistent expression profiles and that the DNA methylation levels were negatively regulated lncRNA expression. Furthermore, we found that Ptk2ß probably regulates cyp19a1 expression via the Ptk2ß/EGFR/STAT3 pathway to reprogram sex differentiation. CONCLUSIONS: This study provides novel insight from lncRNA to explore the potential molecular mechanism by which DNA methylation regulates lncRNA expression to facilitate target gene transcription to reprogram sex differentiation in M. albus, which will also enrich the sex differentiation mechanism of teleosts.


Monopterus albus is a hermaphroditic fish that undergoes sex reversal from female to male via intersex during the process of the gonadal differentiation which was an ideal model for epigenetic modification research. After laying eggs, the female M.albus reversal to the intersex. So that the female have a shorter stage and smaller body size which cause low egg production. In the present study, we produced the transcriptomes which contain mRNA and lncRNA in the crucial stage of the gonad including ovary, ovotestis and testis. This effort reveals that gonadal development was a dynamic expression changes. Regulatory networks of lncRNAs and its target genes were constructed though integrated analysis of lncRNA and mRNA data. We found DNA methylation was negatively associated with lncRNA (MSTRG.38036 and MSTRG.12998) expression in developing gonads. Additionally, 17α-methyltestosterone inhibit the expression of lncRNA and increase methylation. Furthermore, we found that Ptk2ß probably regulates cyp19a1 expression via the Ptk2ß/EGFR/STAT3 pathway to reprogram sex differentiation. The present study on the gonadal differentiation of M. albus provides novel insights from lncRNA to explore potential molecular mechanism. In the future, function of the lncRNA will be further studied and the gene editing technology will be applied to cultivate the female with high fecundity to improve the yield of fish fry.


Assuntos
RNA Longo não Codificante , Smegmamorpha , Masculino , Animais , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Gônadas/metabolismo , Ovário , Testículo , Diferenciação Sexual/fisiologia , Smegmamorpha/metabolismo
2.
Gen Comp Endocrinol ; 333: 114185, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509136

RESUMO

Sex differences in cell number in the preoptic area of the hypothalamus (POA) are documented across all major vertebrate lineages and contribute to differential regulation of the hypothalamic-pituitary-gonad axis and reproductive behavior between the sexes. Sex-changing fishes provide a unique opportunity to study mechanisms underlying sexual differentiation of the POA. In anemonefish (clownfish), which change sex from male to female, females have approximately twice the number of medium-sized cells in the anterior POA compared to males. This sex difference transitions from male-like to female-like during sex change. However, it is not known how this sex difference in POA cell number is established. This study tests the hypothesis that new cell addition plays a role. We initiated adult male-to-female sex change in 30 anemonefish (Amphiprion ocellaris) and administered BrdU to label new cells added to the POA at regular intervals throughout sex change. Sex-changing fish added more new cells to the anterior POA than non-changing fish, supporting the hypothesis. The observed effects could be accounted for by differences in POA volume, but they are also consistent with a steady trickle of new cells being gradually accumulated in the anterior POA before vitellogenic oocytes develop in the gonads. These results provide insight into the unique characteristics of protandrous sex change in anemonefish relative to other modes of sex change, and support the potential for future research in sex-changing fishes to provide a richer understanding of the mechanisms for sexual differentiation of the brain.


Assuntos
Perciformes , Área Pré-Óptica , Animais , Feminino , Masculino , Perciformes/fisiologia , Peixes/fisiologia , Gônadas , Diferenciação Sexual/fisiologia , Caracteres Sexuais
3.
Front Endocrinol (Lausanne) ; 13: 919670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909548

RESUMO

The Sertoli cells of the testes play an essential role during gonadal development, in addition to supporting subsequent germ cell survival and spermatogenesis. Anti-Müllerian hormone (AMH) is a member of the TGF-ß superfamily, which is secreted by immature Sertoli cells from the 8th week of fetal gestation. lnhibin B is a glycoprotein, which is produced by the Sertoli cells from early in fetal development. In people with a Difference or Disorder of Sex Development (DSD), these hormones may be useful to determine the presence of testicular tissue and potential for spermatogenesis. However, fetal Sertoli cell development and function is often dysregulated in DSD conditions and altered production of Sertoli cell hormones may be detected throughout the life course in these individuals. As such this review will consider the role of AMH and inhibin B in individuals with DSD.


Assuntos
Hormônio Antimülleriano , Transtornos do Desenvolvimento Sexual , Inibinas , Células de Sertoli , Diferenciação Sexual , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/metabolismo , Humanos , Subunidades beta de Inibinas/genética , Subunidades beta de Inibinas/metabolismo , Inibinas/genética , Inibinas/metabolismo , Masculino , Células de Sertoli/metabolismo , Diferenciação Sexual/fisiologia , Espermatogênese/fisiologia , Testículo/metabolismo
4.
J Exp Biol ; 225(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35860927

RESUMO

Variation in developmental conditions can affect a variety of embryonic processes and shape a number of phenotypic characteristics that can affect offspring throughout their lives. This is particularly true of oviparous species where development typically occurs outside of the female, and studies have shown that traits such as survival and behavior can be altered by both temperature and exposure to steroid hormones during development. In species with temperature-dependent sex determination (TSD), the fate of gonadal development can be affected by temperature and by maternal estrogens present in the egg at oviposition, and there is evidence that these factors can affect gene expression patterns. Here, we explored how thermal fluctuations and exposure to an estrogen metabolite, estrone sulfate, affect the expression of several genes known to be involved in sexual differentiation: Kdm6b, Dmrt1, Sox9, FoxL2 and Cyp19A1. We found that most of the genes responded to both temperature and estrone sulfate exposure, but that the responses to these factors were not identical, in that estrone sulfate effects occur downstream of temperature effects. Our findings demonstrate that conjugated hormones such as estrone sulfate are capable of influencing temperature-dependent pathways to potentially alter how embryos respond to temperature, and highlight the importance of studying the interaction of maternal hormone and temperature effects.


Assuntos
Processos de Determinação Sexual , Tartarugas , Animais , Estrona/análogos & derivados , Estrona/metabolismo , Feminino , Expressão Gênica , Hormônios , Processos de Determinação Sexual/genética , Diferenciação Sexual/fisiologia , Temperatura , Tartarugas/fisiologia
5.
Cell Prolif ; 55(2): e13165, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34970787

RESUMO

OBJECTIVES: The action of stress hormones, mainly glucocorticoids, starts and coordinates the systemic response to stressful events. The HPA axis activity is predicated on information processing and modulation by upstream centres, such as the hippocampus where adult-born neurons (hABN) have been reported to be an important component in the processing and integration of new information. Still, it remains unclear whether and how hABN regulates HPA axis activity and CORT production, particularly when considering sex differences. MATERIALS AND METHODS: Using both sexes of a transgenic rat model of cytogenesis ablation (GFAP-Tk rat model), we examined the endocrinological and behavioural effects of disrupting the generation of new astrocytes and neurons within the hippocampal dentate gyrus (DG). RESULTS: Our results show that GFAP-Tk male rats present a heightened acute stress response. In contrast, GFAP-Tk female rats have increased corticosterone secretion at nadir, a heightened, yet delayed, response to an acute stress stimulus, accompanied by neuronal hypertrophy in the basal lateral amygdala and increased expression of the glucocorticoid receptors in the ventral DG. CONCLUSIONS: Our results reveal that hABN regulation of the HPA axis response is sex-differentiated.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/diagnóstico por imagem , Sistema Hipófise-Suprarrenal/metabolismo , Diferenciação Sexual/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corticosterona/metabolismo , Corticosterona/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos Transgênicos , Receptores de Glucocorticoides/metabolismo , Diferenciação Sexual/fisiologia
6.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958103

RESUMO

The specific role of gonadotropin-releasing hormone (GnRH) on brain sexual differentiation remains unclear. To investigate whether gonadotropin and, in turn, testosterone (T) secretion is regulated by GnRH during the critical period for brain differentiation in sheep fetuses, we attempted to selectively suppress pituitary-testicular activation during midgestation with the long-acting GnRH antagonist degarelix. Fetuses received subcutaneous injections of the antagonist or vehicle on day 62 of gestation. After 2 to 3 weeks we examined consequences of the intervention on baseline and GnRH-stimulated plasma luteinizing hormone (LH) and T levels. In addition, we measured the effect of degarelix-treatment on messenger RNA (mRNA) expression for the pituitary gonadotropins and key gonadal steroidogenic enzymes. Baseline and GnRH-stimulated plasma LH levels were significantly suppressed in degarelix-treated male and female fetuses compared to control values. Similarly, T concentrations were suppressed in degarelix-treated males. The percentage of LHß-immunoreactive cells colocalizing c-fos was significantly reduced by degarelix treatment indicating that pituitary sensitivity was inhibited. Degarelix treatment also led to the significant suppression of mRNA expression coding for the pituitary gonadotropin subunits and for the gonadal enzymes involved in androgen synthesis. These findings demonstrate that pharmacologic inhibition of GnRH early in gestation results in suppression of LH secretion and deficits in the plasma T levels of male lamb fetuses. We conclude that GnRH signaling plays a pivotal role for regulating T exposure during the critical period of sheep gestation when the brain is masculinized. Thus, disturbance to gonadotropin secretion during this phase of gestation could have long-term consequence on adult sexual behaviors and fertility.


Assuntos
Idade Gestacional , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Gonadotropinas Hipofisárias/metabolismo , Oligopeptídeos/administração & dosagem , Adeno-Hipófise/embriologia , Ovinos/embriologia , Animais , Encéfalo/embriologia , Feminino , Sangue Fetal/química , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/fisiologia , Gonadotropinas Hipofisárias/genética , Injeções Subcutâneas/veterinária , Hormônio Luteinizante/sangue , Masculino , Ovário/química , Ovário/embriologia , Adeno-Hipófise/química , Adeno-Hipófise/efeitos dos fármacos , Gravidez , RNA Mensageiro/análise , Diferenciação Sexual/fisiologia , Testículo/química , Testículo/embriologia , Testosterona/sangue
7.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614143

RESUMO

AROMATASE is encoded by the CYP19A1 gene and is the cytochrome enzyme responsible for estrogen synthesis in vertebrates. In most mammals, a peak of CYP19A1 gene expression occurs in the fetal XX gonad when sexual differentiation is initiated. To elucidate the role of this peak, we produced 3 lines of TALEN genetically edited CYP19A1 knockout (KO) rabbits that were devoid of any estradiol production. All the KO XX rabbits developed as females with aberrantly small ovaries in adulthood, an almost empty reserve of primordial follicles, and very few large antrum follicles. Ovulation never occurred. Our histological, immunohistological, and transcriptomic analyses showed that the estradiol surge in the XX fetal rabbit gonad is not essential to its determination as an ovary, or for meiosis. However, it is mandatory for the high proliferation and differentiation of both somatic and germ cells, and consequently for establishment of the ovarian reserve.


Assuntos
Estrogênios/metabolismo , Ovário/embriologia , Ovário/fisiologia , Processos de Determinação Sexual/fisiologia , Animais , Hormônio Antimülleriano/metabolismo , Diferenciação Celular , Proliferação de Células , Família 19 do Citocromo P450/metabolismo , Estradiol/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gônadas , Mutação INDEL , Folículo Ovariano/fisiologia , Ovulação , Fenótipo , Coelhos , Diferenciação Sexual/fisiologia , Testosterona/metabolismo
8.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478502

RESUMO

Significant sex differences exist across cellular, tissue organization, and body system scales to serve the distinct sex-specific functions required for reproduction. They are present in all animals that reproduce sexually and have widespread impacts on normal development, aging, and disease. Observed from the moment of fertilization, sex differences are patterned by sexual differentiation, a lifelong process that involves mechanisms related to sex chromosome complement and the epigenetic and acute activational effects of sex hormones. In this mini-review, we examine evidence for sex differences in cellular responses to DNA damage, their underlying mechanisms, and how they might relate to sex differences in cancer incidence and response to DNA-damaging treatments.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Diferenciação Sexual/fisiologia , Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Animais , Feminino , Hormônios Esteroides Gonadais/metabolismo , Hormônios Esteroides Gonadais/fisiologia , Humanos , Masculino , Caracteres Sexuais
9.
Gene ; 805: 145910, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34419567

RESUMO

Ethylene is an important regulatory phytohormone for sex differentiation and flower development. As the rate-limiting enzyme encoding genes in ethylene biosynthesis, ACS gene family has been well studied in cucumber; however, little is known in other cucurbit crops, such as melon and watermelon, which show diverse sex types in the field. Here, we identified and characterized eight ACS genes each in the genomes of melon and watermelon. According to the conserved serine residues at C-terminal, all the ACS genes could be characterized into three groups, which were supported by the exon-intron organizations and conserved motif distributions. ACS genes displayed diverse tissue-specific expression patterns among four melon and three watermelon sex types. Furthermore, a comparative expression analysis in the shoot apex identified orthologous pairs with potential functions in sex determination, e.g., ACS1s and ACS6s. All ACS orthologs in melon and watermelon exhibited similar expression patterns in monoecious and gynoecious genotypes, except for ACS11s and ACS12s. As expected, the majority of ACS genes were responsive to exogenous ethephon; however, some orthologs exhibited opposite expression patterns, such as ACS1s, ACS9s, and ACS10s. Collectively, our findings provide valuable ACS candidates related to flower development in various sex types of melon and watermelon.


Assuntos
Cucurbitaceae/genética , Etilenos/metabolismo , Liases/metabolismo , Diferenciação Sexual/genética , Citrullus/genética , Citrullus/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucurbitaceae/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genótipo , Liases/genética , Filogenia , Proteínas de Plantas/genética , Diferenciação Sexual/fisiologia
10.
PLoS One ; 16(7): e0254499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252131

RESUMO

BACKGROUND: Health-seeking behaviour, stigma, and discrimination towards people affected by tuberculosis (TB) are influenced by awareness of the disease. Gender differentials in the diagnosis and treatment of TB have been reported in other settings of the world. However, little is known about the gender differences in the knowledge of TB transmission and curative possibility in Ghana. METHODS: The analysed data were a weighted sample of 9,396 women aged 15-49 years and 4,388 men aged 15-59 years, obtained from the 2014 Ghana Demographic and Health Survey. The dependent variable, correct knowledge regarding TB transmission and cure was derived from questions on the transmission of the disease and the possibility of a cure. A design-based multivariate logistic regression model in Stata 13.0/SE was used to identify the correlates of reporting correct knowledge. RESULTS: Overall, the mean knowledge score was 6.1±0.9 (maximum = 7). Of the 13,784 respondents, 45.7% (95% CI: 44.0-47.3) reported correct knowledge regarding TB transmission and cure. Men had significantly higher knowledge than women (50.9% versus 43.2%). Misconceptions, including TB transmitted through sharing utensils (13.3%), food (6.9%), touching a person with TB (4.5%), sexual contact (4.1%), and mosquito bites (0.4%) were noted. About 30% (33% women and 25% men) of the total sample would keep the information secret when a household member is affected with TB. In the adjusted analysis, age, gender, education, region, place of residence, wealth quintile, frequency of reading newspaper/magazine, listening to the radio, and watching television were significantly associated with reporting correct knowledge. CONCLUSIONS: There was low knowledge regarding TB transmission and cure. Misconceptions regarding the transmission of TB prevailed among the participants. Gender differential in knowledge was observed. Comparatively, females were less likely to be aware of TB and report correct knowledge regarding TB transmission but were more likely to conceal information when a household member was affected by the disease.


Assuntos
Tuberculose/transmissão , Adolescente , Adulto , Feminino , Gana/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Autorrelato , Diferenciação Sexual/fisiologia , Tuberculose/epidemiologia , Adulto Jovem
11.
Biomolecules ; 11(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201983

RESUMO

Environmental estrogen is a substance that functions as an endocrine hormone in organisms and can cause endocrine system disruption. A typical environmental estrogen, diethylstilbestrol (DES), can affect normal sexual function and organism development. However, even though the effects of different exposure stages of DES on the endocrine system and gonadal development of zebrafish juveniles are unknown, sex determination is strongly influenced by endocrine-disrupting chemicals (EDCs). From 10-90 days post fertilization (dpf), juvenile zebrafish were exposed to DES (100 and 1000 ng/L) in three different stages (initial development stage (IDS), 10-25 dpf; gonadal differentiation stage (GDS), 25-45 dpf and gonadal maturity stage (GMS), 45-60 dpf). Compared with that of IDS and GMS, the growth indicators (body length, body weight, and others) decreased significantly at GDS, and the proportion of zebrafish females exposed to 100 ng/L DES was significantly higher (by 59.65%) than that of the control; in addition, the zebrafish were biased towards female differentiation. The GDS is a critical period for sex differentiation. Our results show that exposure to environmental estrogen during the critical gonadal differentiation period not only affects the development of zebrafish, but also affects the population development.


Assuntos
Dietilestilbestrol/toxicidade , Disruptores Endócrinos/toxicidade , Estrogênios não Esteroides/toxicidade , Gônadas/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos , Animais , Tamanho Corporal/efeitos dos fármacos , Tamanho Corporal/fisiologia , Feminino , Masculino , Diferenciação Sexual/fisiologia , Peixe-Zebra
12.
Sci Rep ; 11(1): 13620, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193934

RESUMO

In European sea bass (Dicentrarchus labrax), as in many other fish species, temperature is known to influence the sex of individuals, with more males produced at relatively high temperatures. It is however unclear to what extent growth or stress are involved in such a process, since temperature is known to influence both growth rate and cortisol production. Here, we designed an experiment aiming at reducing stress and affecting early growth rate. We exposed larvae and juveniles originating from both captive and wild parents to three different treatments: low stocking density, food supplemented with tryptophan and a control. Low stocking density and tryptophan treatment respectively increased and decreased early growth rate. Each treatment influenced the stress response depending on the developmental stage, although no clear pattern regarding the whole-body cortisol concentration was found. During sex differentiation, fish in the low-density treatment exhibited lower expression of gr1, gr2, mr, and crf in the hypothalamus when compared to the control group. Fish fed tryptophan displayed lower crf in the hypothalamus and higher level of serotonin in the telencephalon compared to controls. Overall, fish kept at low density produced significantly more females than both control and fish fed tryptophan. Parents that have been selected for growth for three generations also produced significantly more females than parents of wild origin. Our findings did not allow to detect a clear effect of stress at the group level and rather point out a key role of early sexually dimorphic growth rate in sex determination.


Assuntos
Bass/fisiologia , Proteínas de Peixes/biossíntese , Regulação da Expressão Gênica , Hidrocortisona/sangue , Hipotálamo/metabolismo , Diferenciação Sexual/fisiologia , Animais , Feminino , Masculino
13.
J Exp Zool B Mol Dev Evol ; 336(5): 431-442, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101984

RESUMO

Vasa, one of the best-studied germ cell markers plays a critical role in germ cell development and differentiation in animals. Vasa deficiency would lead to male-specific sterility in most vertebrates, but female sterility in the fly. However, the role of the vasa gene involved in germ cell differentiation is largely elusive. Here, we first characterized the expression profile of vasa products in the Asian yellow pond turtle by quantitative reverse-transcription polymerase chain reaction and fluorescence immunostaining. The results showed that vasa messenger RNA (mRNA) is initially detected in embryos at stage 16, and then dramatically increased in embryos at stage 19. In particular, like the sex-related genes, vasa mRNA exhibited differential expression in embryos between the male-producing temperature (MPT, 25°C) and the female-producing temperature (FPT, 33°C), whereas there was no difference in methylation levels of vasa promoter detected between FPT and MPT. In contrast, in the adult Asian yellow pond, the level of vasa mRNA was much higher in the testis than ovary. Moreover, the immunostaining on testicular sections and cells showed that Vasa protein was exclusively expressed in germ cells: Weak but detectable in spermatogonia, highest in spermatocytes, moderate and concentrated in chromatid bodies in spermatids and spermatozoa, and bare in somatic cells. The expression profile of Vasa protein is similar in turtle species studied so far but distinct from those in fish species in this study. The findings of this study would provide new insights into our understanding of the conservation and divergence of the vasa gene, even other germ cell genes across phyla.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Diferenciação Sexual/fisiologia , Tartarugas/fisiologia , Animais , RNA Helicases DEAD-box/genética , DNA Complementar , Embrião não Mamífero/metabolismo , Feminino , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Marcadores Genéticos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatozoides , Transcriptoma , Tartarugas/embriologia , Tartarugas/genética
14.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33963381

RESUMO

The WNT family of proteins is crucial in numerous developmental pathways and tissue homeostasis. WNT4, in particular, is uniquely implicated in the development of the female phenotype in the fetus, and in the maintenance of müllerian and reproductive tissues. WNT4 dysfunction or dysregulation can drive sex-reversal syndromes, highlighting the key role of WNT4 in sex determination. WNT4 is also critical in gynecologic pathologies later in life, including several cancers, uterine fibroids, endometriosis, and infertility. The role of WNT4 in normal decidualization, implantation, and gestation is being increasingly appreciated, while aberrant activation of WNT4 signaling is being linked both to gynecologic and breast cancers. Notably, single-nucleotide polymorphisms (SNPs) at the WNT4 gene locus are strongly associated with these pathologies and may functionally link estrogen and estrogen receptor signaling to upregulation and activation of WNT4 signaling. Importantly, in each of these developmental and disease states, WNT4 gene expression and downstream WNT4 signaling are regulated and executed by myriad tissue-specific pathways. Here, we review the roles of WNT4 in women's health with a focus on sex development, and gynecologic and breast pathologies, and our understanding of how WNT4 signaling is controlled in these contexts. Defining WNT4 functions provides a unique opportunity to link sex-specific signaling pathways to women's health and disease.


Assuntos
Doenças dos Genitais Femininos , Genitália Feminina , Proteína Wnt4/fisiologia , Saúde da Mulher , Animais , Neoplasias da Mama/genética , Feminino , Doenças dos Genitais Femininos/genética , Humanos , Glândulas Mamárias Humanas/fisiologia , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Diferenciação Sexual/fisiologia , Desenvolvimento Sexual/fisiologia , Útero/fisiologia , Proteína Wnt4/genética
15.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33795229

RESUMO

During development of the mouse urogenital complex, the gonads undergo changes in three-dimensional structure, body position and spatial relationship with the mesonephric ducts, kidneys and adrenals. The complexity of genital ridge development obscures potential connections between morphogenesis and gonadal sex determination. To characterize the morphogenic processes implicated in regulating gonad shape and fate, we used whole-embryo tissue clearing and light sheet microscopy to assemble a time course of gonad development in native form and context. Analysis revealed that gonad morphology is determined through anterior-to-posterior patterns as well as increased rates of growth, rotation and separation in the central domain that may contribute to regionalization of the gonad. We report a close alignment of gonad and mesonephric duct movements as well as delayed duct development in a gonad dysgenesis mutant, which together support a mechanical dependency linking gonad and mesonephric duct morphogenesis.


Assuntos
Gônadas/fisiologia , Morfogênese/fisiologia , Ductos Mesonéfricos/fisiologia , Animais , Embrião de Mamíferos/fisiologia , Feminino , Idade Gestacional , Rim/fisiologia , Masculino , Mesonefro/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Diferenciação Sexual/fisiologia
16.
Indian J Pathol Microbiol ; 64(2): 390-393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33851643

RESUMO

Gonadal dysgenesis is a distinct variety of Disorders of Sexual Differentiation (DSD) characterised by incomplete or defective formation of the gonads due to either structural or numerical anomalies of the sex chromosomes or mutations in the genes involved in the development of the gland. Here we present two such rare cases that presented during childhood. Both patients presented with ambiguous genitalia with a 45XO/46XY mosaic chromosome pattern. First case, an infant underwent laparoscopic excision of streak gonad, and a single stage hypospadias repair later. Second case, an adolescent who underwent gonadectomy as a child, presented with a mass which was excised and found to contain uterine and ovarian tissue; second stage hypospadias repair is being planned. Mixed gonadal dysgenesis usually presents with a unilateral testis, a streak gonad on the contralateral side and persistent mullerian structures. The most common karyotype noted is 45XO/46XY. These cases are known to have ambiguous external genitalia. The streak gonads have an increased malignant potential and thus, these patients should be carefully screened and followed up for gonadoblastoma.


Assuntos
Transtornos do Desenvolvimento Sexual/fisiopatologia , Disgenesia Gonadal Mista/fisiopatologia , Aberrações dos Cromossomos Sexuais , Diferenciação Sexual/fisiologia , Cariótipo Anormal , Adolescente , Deleção Cromossômica , Criptorquidismo/genética , Feminino , Humanos , Hipospadia/fisiopatologia , Lactente , Masculino , Mosaicismo , Linha Primitiva/embriologia , Testículo/anormalidades , Útero/anormalidades
17.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784378

RESUMO

Two specialized functions of cholesterol during fetal development include serving as a precursor to androgen synthesis and supporting hedgehog (HH) signaling activity. Androgens are produced by the testes to facilitate masculinization of the fetus. Recent evidence shows that intricate interactions between the HH and androgen signaling pathways are required for optimal male sex differentiation and defects of either can cause birth anomalies indicative of 46,XY male variations of sex development (VSD). Further, perturbations in cholesterol synthesis can cause developmental defects, including VSD, that phenocopy those caused by disrupted androgen or HH signaling, highlighting the functional role of cholesterol in promoting male sex differentiation. In this review, we focus on the role of cholesterol in systemic androgen and local HH signaling events during fetal masculinization and their collective contributions to pediatric VSD.


Assuntos
Androgênios/biossíntese , Colesterol/fisiologia , Proteínas Hedgehog/metabolismo , Diferenciação Sexual/fisiologia , Transdução de Sinais/fisiologia , Animais , Colesterol/biossíntese , Transtornos do Desenvolvimento Sexual , Desenvolvimento Fetal/fisiologia , Feto/metabolismo , Humanos , Células Intersticiais do Testículo/fisiologia , Masculino , Testículo/embriologia , Testículo/metabolismo
18.
Parasitol Res ; 120(5): 1555-1561, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33655351

RESUMO

Sexually anomalous individuals, typically intersexes or gynandromorphs, bear a mixture of male and female traits. Twelve sexually anomalous individuals of the black fly Simulium (Gomphostilbia) trangense Jitklang, Kuvangkadilok, Baimai, Takaoka & Adler were discovered among 49 adults reared from pupae. All 12 sexually anomalous adults were parasitized by mermithid nematodes, although five additional parasitized adults had no overt external anomalies. Sequence analysis of the 18S rRNA gene revealed that the mermithids, possibly representing a new species, are related to Mesomermis spp., with genetic distances of 5.09-6.87%. All 12 anomalous individuals had female phenotypical traits on the head, thorax, forelegs, midlegs, and claws, but male features on the left and right hind basitarsi. One individual had mixed male and female genitalia. The findings are in accord with the trend that mermithid infections are associated with sexually anomalous adult black flies.


Assuntos
Mermithoidea/isolamento & purificação , Caracteres Sexuais , Simuliidae/parasitologia , Animais , Feminino , Larva/crescimento & desenvolvimento , Masculino , Mermithoidea/classificação , Mermithoidea/genética , Pupa/crescimento & desenvolvimento , RNA Ribossômico 18S/genética , Diferenciação Sexual/fisiologia
19.
PLoS One ; 16(3): e0248368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33690629

RESUMO

Emotional stability-Neuroticism is a complex construct influenced by genetics and environmental factors. Women tend to exhibit higher neuroticism scores than men, which may be associated with an increased risk of suffering from some common mental conditions. Some authors have pointed out the influence of sex hormones, since they induce sexual differentiation of the brain that can lead to sex-specific behaviors. 2D:4D digit ratio is commonly used as a marker of prenatal sex hormones. In this study we analyzed whether there was an association between 2D:4D and personality measured through the BFQ in a homogeneous sample of 101 young women college students. We found a positive association between 2D:4D and emotional stability, as well as with its subdimensions emotion control and impulse control. This association could be quadratic and nonlinear. However, no association was found with the other four dimensions. We also measured anxiety, depression and global life satisfaction, variables related to neuroticism. We observed that emotional stability is positively associated to social desirability and global life satisfaction, and negatively related to anxiety and depression. On the other hand, we did not find any association between 2D:4D and anxiety, depression, and global life satisfaction. These results can be linked to other aspects such as subjective well-being and psychopathological symptoms. This study may help to better understand how these constructs are related and could lead to future projects to elucidated how these variables influence personality.


Assuntos
Ansiedade/fisiopatologia , Emoções/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Transtornos Mentais/epidemiologia , Adulto , Ansiedade/epidemiologia , Ansiedade/metabolismo , Regulação Emocional/fisiologia , Feminino , Hormônios Esteroides Gonadais/genética , Humanos , Masculino , Transtornos Mentais/fisiopatologia , Neuroticismo/fisiologia , Satisfação Pessoal , Personalidade/genética , Personalidade/fisiologia , Gravidez , Caracteres Sexuais , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Comportamento Sexual/fisiologia , Desejabilidade Social , Estudantes/psicologia , Adulto Jovem
20.
Sci Rep ; 11(1): 4486, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627800

RESUMO

Steroidogenic factor 1 (NR5A1) is essential for gonadal development. To study the importance of NR5A1 during early gonadal sex differentiation, we generated Sox9-Cre-Nr5a1 conditional knockout (cKO) mice: Sox9-Cre;Nr5a1flox/flox and Sox9-Cre;Nr5a1flox/- mice. Double-immunostaining for NR5A1 and AMH revealed silenced NR5A1 in Sertoli cells and reduced AMH+ cells in the gonads of XY Sox9-Cre-Nr5a1 cKO mice between embryonic days 12.5 (E12.5) and E14.5. Double-immunostaining for SOX9 and FOXL2 further indicated an early block in Sertoli cells and ectopic granulosa cell differentiation. The number of cells expressing the Leydig cell marker 3ßHSD obviously reduced in the gonads of XY Sox9-Cre;Nr5a1flox/- but not Sox9-Cre;Nr5a1flox/flox mice at E15.5. The presence of STRA8+ cells indicated that germ cells entered meiosis in the gonads of XY Sox9-Cre-Nr5a1 cKO mice. The results of qRT-PCR revealed remarkably reduced and elevated levels of testis and ovary markers, respectively, in the gonads of XY Sox9-Cre-Nr5a1 cKO mice at E12.5‒E13.5. These data suggested that the loss of Nr5a1 abrogates the testicular pathway and induces the ectopic ovarian pathway, resulting in postnatal partial/complete male-to-female gonadal sex reversal. Our findings provide evidence for the critical role of NR5A1 in murine gonadal sex determination in vivo.


Assuntos
Diferenciação Celular/fisiologia , Integrases/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator Esteroidogênico 1/metabolismo , Testículo/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gônadas/metabolismo , Gônadas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovário/metabolismo , Ovário/fisiologia , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Diferenciação Sexual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...